• 发文
  • 评论
  • 微博
  • 空间
  • 微信

激光焊接过程监测

激光智能制造课题组 2022-04-26 15:05 发文

等离子体是激光深熔焊接过程中由金属蒸气发生电离作用而形成的,其自身蕴含着丰富的焊接过程动态信息。当激光能量密度大于物质的烧蚀阈值时,物质会从基体中剥离,这一过程中伴随着大量等离子体的产生。等离子体中包含了激发态原子、电子和带电粒子,而入射激光与等离子体相互作用会诱发电磁波。通过采集电磁波信号的光谱、温度等特征数据可以实现对激光加工的在线监测。

 Stafe等人通过实验表明,当作用脉冲数在一定范围内时,铝的谱线强度随着脉冲个数的增加线性衰减;当作用脉冲数超出范围后,谱线强度的衰减迅速减缓,这与加工产生的微坑形貌直接相关。由于激光脉冲的不断叠加,微坑直径逐渐大于等离子体羽的流体动力长度,等离子体羽开始沿着径向扩张。后续激光脉冲作用时,等离子体羽的密度和温度逐渐下降,最终以获得的等离子体的发射光谱及其热动力学属性为基础,实现对烧蚀速率和微坑尺寸的在线监测。

     Rizzi等人发现入射激光能量的提高导致焊接深度增加,等离子体的温度核心逐渐向工件内部移动并逐渐陷进焊接毛细孔中,此时被光谱仪采集到的等离子体光谱信号实际上是温度较低的等离子体外壳发出的,故实际测得的等离子体光谱强度削弱了。光谱仪可以探测激光加工各种物质时发射的谱线,具有广泛的适应性和较高的测量精度,而且适合对激光微纳加工过程进行在线监测。但是,基于光谱仪的在线监测系统搭建和调试较为复杂、工作距离短、同时使用和维护成本较高,所以在工业上的大规模应用较为困难。

  有学者为了确定焊缝的完整性与激光和材料之间的相互作用之间的相关性。利用光谱传感器检测了AZ31B镁合金在零间隙搭接结构下的激光焊接过程中等离子体羽流发出的光谱。利用基于检测光谱的波尔兹曼图法计算了电子温度,并研究了孔隙形成与光谱信号之间的相关性。采用高速电荷耦合器件(CCD)摄像机实时监测激光熔池和锁孔状态。采用绿色激光器作为照明光源,以检测氧化物层对熔融池动态行为的影响。结果表明,检测谱与焊缝缺陷对镁合金激光焊接时焊缝质量的实时监测具有重要的相关性。

  激光焊接中产生的等离子体特性与焊缝的穿透状态和由此产生的焊缝性能密切相关。建立了H340LA高强度钢定制轧坯激光深透焊中等离子体羽流和光谱的实时监测平台。采用图像处理方法和光谱处理方法研究了等离子体羽流的穿透与光谱的相关性。焊缝渗透状态分为过度渗透、适度渗透和部分渗透三类,采用基于等离子体羽流谱的多特征反向传播(BP)神经网络模型预测焊缝穿透状态,预测精度为97%,大大高于单特征神经网络模型。本文为实现焊缝穿透的实时控制提供了技术指导。

声明:本文为OFweek维科号作者发布,不代表OFweek维科号立场。如有侵权或其他问题,请及时联系我们举报。
2
评论

评论

    相关阅读

    暂无数据

    举报文章问题

    ×
    • 营销广告
    • 重复、旧闻
    • 格式问题
    • 低俗
    • 标题夸张
    • 与事实不符
    • 疑似抄袭
    • 我有话要说
    确定 取消

    举报评论问题

    ×
    • 淫秽色情
    • 营销广告
    • 恶意攻击谩骂
    • 我要吐槽
    确定 取消

    用户登录×

    请输入用户名/手机/邮箱

    请输入密码