• 发文
  • 评论
  • 微博
  • 空间
  • 微信

混合算法(GA+TS)求解作业车间调度问题代码解读+完整JAVA代码

程序猿声2020-08-12 09:42发文

程序猿声

代码黑科技的分享区

前两篇文章中,我们介绍了FJSP问题,并梳理了一遍HA算法。这一篇文章对小编实现的(很乱很烂的)代码进行简单解读。

往期回顾:

种群进化+邻域搜索的混合算法(GA+TS)求解作业车间调度问题(JSP)-算法介绍

混合算法(GA+TS)求解作业车间调度问题(JSP)-禁忌搜索部分

代码下载请关注公众号,后台回复【FJSPHA】即可,不包括【】

代码框架

代码分为5个包,第一部分Data为用到的各类结构,第二部分GA为GA部分+第一个TS,第三部分主函数,第四、五部分是两个TS。

算例放置在input文件夹中,这里准备了Mk系列算例,Kacem系列算例和论文中的简单算例test.txt。

Main

算例输入:

Main中还有一个输出为CSV的函数,需要一个jar包,已经放在下载链接里了,不需要的同学也可以删除。

Data

一堆乱七八糟的结构。这里简单讲一下Solution类和Graph类。

Solution类中包含多个print函数,比较重要的包括绘制甘特图以及check解是否合法。

operationMatrix是解的主题,存放某个工件的某道工序的开始、结束时间,所在加工机器。

Graph类表示析取图。nodeList是每台机器上的node。其中起始点、终止点我单独提取出来设置了两个类。Graph中还包含了获取critical path的DFS和update starting time & end time的Bellman算法。

GA

MyHybridAlgorithm类是GA的主函数。小编在实现的时候进行了多种测试,比如迭代的noImprove次数达到limit时进行扰动:

选择哪种Tabu:

读者在阅读的时候请自己注意。

算法相关的参数我都做了初始化,请自行查找修改:

交叉、变异等操作包含在ChromosomeOperation类中,计算适应度的函数在CaculateFitness类中,TabuSearch1类是基于编码的tabu,这里都不多展示了。

NeighbourSearch

这个包包含的是基于析取图的tabu。NeighbourAlgorithms类相当于Main,包含解转化为图的函数:

TabuSearch2类为tabu主函数。NeighbourGraph类存放析取图邻域搜索产生的解。

DeleteNeighbourGraph类为析取图中暂时去掉某个点后的情况,PM、PJ、SM、SJ代表precede、succeed、machine、job四条边对应的点,deleteNode为删去的点。

其中还有findLandR位置的二分查找函数,insert时的估值函数:

NeighbourSearch2

这个包为第三个基于甘特图的tabu。

RTS类为tabu的主函数。解通过:ArrayList<ArrayList<Operation>> 的形式表示。

replan函数中包含了在甘特图上进行swap操作后更新解的方法,有详细注释:

总结

到这里已经大致梳理了一遍代码,但其中还有很多细节没有讲到,包括很多东西实现的不好,欢迎随时和我交流。

由于是自己研究时写的代码,其中很多东西会比较乱,但是代码中做了很多注解,仔细阅读应该能看得懂的!

下载的压缩包里包括我学习过程中看过的大部分文献,包括主要参考的文献,大家可以进一步阅读研究。

参考


[1]Li, Xinyu , and L. Gao . "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem." International Journal of Production Economics 174.Apr.(2016):93-110.
[2]Zhang, Chao Yong , P. G. Li , and Y. R. Zailin Guan . "A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem." Computers & Operations Research 34.11(2007):3229-3242.
[3]Mastrolilli, Monaldo , and L. M. Gambardella . "Effective Neighbourhood Functions for the Flexible Job Shop Problem." Journal of Scheduling 3.1(2015):3-20.
[4]Zhang, Guohui , L. Gao , and Y. Shi . "An effective genetic algorithm for the flexible job-shop scheduling problem." Expert Systems with Applications 38.4(2011):3563-3573.

推荐阅读:

干货 | 想学习优化算法,不知从何学起?

干货 | 运筹学从何学起?如何快速入门运筹学算法?

干货 | 学习算法,你需要掌握这些编程基础(包含JAVA和C++)

干货 | 算法学习必备诀窍:算法可视化解密

干货 | 模拟退火、禁忌搜索、迭代局部搜索求解TSP问题Python代码分享

声明:本文为OFweek维科号作者发布,不代表OFweek维科号立场。如有侵权或其他问题,请及时联系我们举报。
2
评论

评论

    相关阅读

      暂无数据

      程序猿声

      编程爱好者的聚居地,代码黑科技的...

      举报文章问题

      ×
      • 营销广告
      • 重复、旧闻
      • 格式问题
      • 低俗
      • 标题夸张
      • 与事实不符
      • 疑似抄袭
      • 我有话要说
      确定取消

      举报评论问题

      ×
      • 淫秽色情
      • 营销广告
      • 恶意攻击谩骂
      • 我要吐槽
      确定取消

      用户登录×

      请输入用户名/手机/邮箱

      请输入密码