• 发文
  • 评论
  • 微博
  • 空间
  • 微信

电子产品&设备EMI问题的传递路径分析与案例

物联产品&电磁兼容EMC 2019-07-11 08:32 发文

我们在谈到电子产品&设备的EMC问题的时候,EMC的三要素已经成为了我们的行动大纲;EMC三要素:干扰源-耦合路径-敏感设备;从理论上三要素如果解决处理好任意一个因素就构不成干扰或骚扰的问题;

EMC=EMI+EMS;对于EMS的三要素:干扰源(比如外部施加EFT,ESD,SURGE)通过传递路径(耦合路径)到我们的敏感电路产生噪声干扰;出现电子产品&设备的功能及性能的问题!

对于EMI的三要素:骚扰源(内部电路的du/dt(电压突变)&di/dt(电流突变))通过传递路径到等效天线的模型被我们的EMI的测试接收机接收;就形成了我们的EMI数据-必须达到无线电通信限值的要求!

我的EMI的理论是先分析再设计;实现性价比最优化原则!如下图:

通过上图我从EMI的正向设计进行了系统的讲述:对电子产品&设备首先;

A.确认有哪些噪声源;

B.分析噪声源的特性;相关资料可以通过网络搜索作者名字下载或观看;(我的理论:先分析再设计;了解噪声源头特性是关键)!

C.确认噪声源的传递路径;这也是我们大多数工程师处理EMI-Issue时的着手点;(处理的手段和方法);EMI的耦合路径:感性耦合;容性耦合;传导耦合;辐射耦合!

D.对上述的结果进行分析确认后;就会有最佳化的设计!

EMI骚扰的以下几种路径:(总的EMI的耦合路径进行分析)

对于空间耦合(辐射耦合)和传导耦合,大家都比较好理解;

辐射耦合:比如时钟源靠近端子连接线就会发生辐射耦合;

传导耦合:比如电子线路中有交叉的走线回路及关联线路就会发生传导耦合;

 

在实际中我们还有10%的EMI的问题也是众多设计师们没有注意的问题!从而要从PCB的分析来入手!!分析框图结构如下:

1.感性耦合路径问题

注意电路中的感性元件:

电感(输入&输出差模,共模电感,PFC电感,BUCK-L,BOOST-L…)及变压器等等;这些器件的位置放置及PCB走线都会带来EMI-Issue.

 

2.容性耦合路径问题

注意电路中任意相近的两根电流导线都会存在分布电容耦合:PCB走线 及 连接线等等;

我通过下面的原理分析框图来进行详细的说明;后面再给出我碰到的实际案例进行参考-分析电子产品&设备中的感性耦合与容性耦合问题;

上面的原理路径示意框图设计到的信息非常广,可以延伸到不同的电源拓扑结构;涉及到系统的传导理论,辐射理论;如果上面的电路你就当做是标准的PFC大功率应用电路;这时候你就会考虑30MHZ-300MHZ的骚扰功率的问题!如果电路结构前级输入是低压的交流输入(例如12VAC)这个电路可以是标准的升压(BOOST)电路结构;改变一下电感,开关MOS及输出二极管的位置;这个电路就可以变成高压或中低压的降压(BUCK)电路;也就是说这类电路的应用在EMI的问题表现及处理上都可使用同样的等效结构;处理EMI的问题就非常类同了。

 

A.在上面的电路结构中电感回路及输出回路比较优化,并且和交流输入有足够的距离时;如果有EMI的问题请参考《开关电源:EMC的分析与设计》快速设计理论方案!

B.我在进行企业内训时就出现实际的特别案例;EMI传导设计-中高频部分优化我们共模滤波器没有明显的效果;分析框图结构如下:

该电路结构是典型的交流220VAC整流滤波后进行BUCK电路的高压降压电路设计,输出15V/0.1A 典型系统供电电路;EMI电路的滤波电路使用2级滤波器结构;我进行上述的EMI的路径分析这个2级滤波器完全足够解决150KHZ-10MHZ的传导干扰;进行分析如下:

1.检查PCB设计电路中的BUCK电感距离输入EMI滤波器较近;BUCK电路的高压电容的环路及续流二极管的环路面积均较大,且走线靠近输入滤波器走线!

由此分析如上图中黑线环路及路径造成了>940KHZ到几MHZ的EMI频段多点超标问题;(感性耦合-工字型电感 & 关键走线-容性耦合)

 

2.采用最简单的方式来判断问题;使用一个磁环将交流输入电源线绕3圈及以上;EMI超标点立刻消失并且通过EMI测试!

 

3.通过上面的磁环验证很明显我们找到解决问题的方法:去掉1级共模电感;使用一个双线并绕的共模电感(1-5mH均可)放置在电路板的电源线入口进行测试;整个EMI测试数据均达到10dB以上的裕量!

由此确定好系统的EMI路径后,我们对系统可以进行很好的降成本设计!按照我的理论再将电路板PCB布局布线进行优化,使用最优化的EMI滤波器结构可以节省很大的设计成本!

 

C.如下TV的电源板EMI问题;感性耦合-PFC电感与共模电感 &关键走线-容性耦合;电路板设计布局如下:

这个案例电路板设计,跟B项的情况基本一致!B的案例是交流输入的高压BUCK降压电路;而这个电路结构是交流输入的PFC电路;因此使用B项上面的1,2,3条就解决了EMI问题!

我再将如下设计中常见的设计问题提供给朋友们分析参考!

典型案例1.产品开关电源系统的EMI传导问题;进行传导测试时EMI超标;

方案设计结构如下图:

如上图,PCB布局EMI的耦合问题分析;EMI的耦合路径:感性耦合;容性耦合;传导耦合;辐射耦合!我们需要关注!!

超标的EMI传导问题;EMI输入的共模电感增大或减小对系统没有测试没有效果?让设计师将共模电感与图中的散热器进行拉开距离;通过上述的优化就能通过传导测试!

 

典型案例2.产品紧凑型开关电源系统的EMI传导问题;进行传导测试时,EMI超标;方案设计结构如下图:

优化方案同案例2-超标的EMI传导问题;EMI输入的共模电感增大或减小对系统没有测试没有效果?让设计师将共模电感与图中的散热器进行拉开距离;通过上述的优化通过传导测试!

思考一下?EMI从1M-10MHZ通常正确的共模滤波器的设计为什么搞不定问题?

请参考我的电子产品:PCB布局布线的耦合EMI路径分析!》提供分析依据,搞定EMI的超标设计问题!如下分析思路供参考:

容性耦合路径问题

1&2案例的典型特点:开关MOS的散热器靠近共模电感的设计Issue!!!

注意电路中任意相近的两根电流导线都会存在分布电容耦合:临近PCB走线及 关键走线&连接线&输入共模滤波器,散热器等等;

 

更多设计应用实践及技术交流;请关注阿杜老师!

杜佐兵 

电磁兼容(EMC)线上&线下高级讲师

杜佐兵老师在电子行业从业近20年,是国家电工委员会高级注册EMC工程师,武汉大学光电工程学院、光电子半导体激光技术专家。目前专注于电子产品的电磁兼容设计、开关电源及LED背光驱动设计。

2019年在电源网研讨会和大家一起进行交流!

下一站深圳,东莞,成都,上海,杭州……我将理论与实践分享给大家;

与君探讨,我们不见不散!

如果对我以下的课程(课题)感兴趣,欢迎邀约和大家分享!

任何的EMC及电子电路的可靠性设计疑难杂症;先分析再设计才是高性价比的设计!

实际应用中电子产品的EMC涉及面比较广;我的系统理论及课程再对电子设计师遇到的实际问题 进行实战分析!先分析再设计;实现性价比最优化原则!


声明:本文为OFweek维科号作者发布,不代表OFweek维科号立场。如有侵权或其他问题,请及时联系我们举报。
2
评论

评论

    相关阅读

    暂无数据

    物联产品&电磁兼容EMC

    物联网产品的介绍及应用&电子产品...

    举报文章问题

    ×
    • 营销广告
    • 重复、旧闻
    • 格式问题
    • 低俗
    • 标题夸张
    • 与事实不符
    • 疑似抄袭
    • 我有话要说
    确定 取消

    举报评论问题

    ×
    • 淫秽色情
    • 营销广告
    • 恶意攻击谩骂
    • 我要吐槽
    确定 取消

    用户登录×

    请输入用户名/手机/邮箱

    请输入密码