• 发文
  • 评论
  • 微博
  • 空间
  • 微信

开关电源电路:FLY-时域波形分析到EMI设计

电子产品&设备开关电源使用越来越广泛!基本的FLY变换器原理图如下所示,在需要对输入输出进行电气隔离的低功率<75W~的开关电源应用场合,反激变换器(FLY Converter)是最常用的一种拓扑结构。简单、可靠、低成本、易于实现是反激变换器突出的优点;接下来将电源的关键部分的波形进行分析!

开关电源-FLY原理方案设计如下:

开关电源系统主要器件为:开关MOS管,开关变压器,输出整流二极管;同时这三个器件也是EMI的产生的骚扰源头;开关电源-FLY其变压器的架构都会设计有气隙的磁芯变压器,当主开关器件MOSFET导通时,能量以磁通形式存储在变压器中,并在MOSFET关断时将能量传递至输出。由于变压器需要在MOSFET导通期间存储能量,磁芯都要有气隙(大部分能量在气隙中),基于这种特殊的功率转换过程,所以FLY反激式变换器可以设计转换传输的功率有一定的限制,但很适用低成本中低功率应用的电子产品&设备的供电系统的应用。

 

开关电源电路FLY-反激变换器的工作机理如下图:

开关电源电路FLY反激变换器在正常工作情况下,当MOSFET关断时,初级电流(Id)在短时间内为 MOSFET的Coss(即Cgd+Cds)充电,当Coss两端的电压Vds超过输入电压与反射输出电压之和(Vin+nVo)时,次级二极管导通,初级电感Lp两端的电压被箝位至nVout。因此初级总漏感Lk(即Lkp+n2×Lks)和Coss之间发生谐振,产生高频尖峰高压,如MOS管上的过高的电压可能会导致产品的可靠性问题。

    参考上图:FLY-反激式变换器可以工作在连续导通模式(CCM)和不连续导通模式(DCM)模式下。

当工作在CCM模式时,次级二极管保持导通直至MOSFET栅极导通,而MOSFET导通时,次级二极管的反向恢复电流被添加至初级电流,因此在导通瞬间初级电流上出现较大的电流尖峰;

当工作在DCM模式时,由于次级电流在一个开关周期结束前电流为零,可以实现零电流的开关模式;这个DCM模式下对EMI是有利的;因此我一般是建议电子产品&设备使用FLY开关电源系统时要设计工作在DCM模式下;但此时会出现Lp和MOSFET的Coss之间发生谐振。以下进行Data分析;

    如上图所示的包含寄生元件的FLY变换器结构图,其中Cgs、Cgd和 Cds分别为开关管MOSFET的栅源极、栅漏极和漏源极的寄生电容,Lp、Lkp、Lks和Cp分别为变压器的初级电感、初级电感的漏感、次级电感的漏感和原边线圈的杂散电容,Cj为输出二极管的结电容。

注意:开关MOS-S脚到C1的红色走线与Coss& Lkp与Coss的谐振会造成开关电源电路30MHZ-50MHZ的频域EMI辐射问题!

 

在开关管开通瞬间,由于电容两端电压不能突变,杂散电容Cp两端电压开始是上负下正,产生放电电流,随着开关管逐渐开通,电源C1电压Vin对杂散电容Cp充电,其两端电压为上正下负,形成流经开关管和Vin的电流尖峰;

同时Cds电容对开关管放电,也形成电流尖峰,但是此尖峰电流不流经Vin,只在开关管内部形成回路;另外,如果变换器工作在CCM模式时,由于初级电感Lp两端电压缩小,输出二极管D开始承受反偏电压关断,引起反向恢复电流,该电流经变压器耦合到原边侧,也会形成流经开关管和Vin的电流尖峰。

在开关管开通阶段,输出二极管D截止,电容Cp两端电压为Vin,通过初级电感Lp的电流指数上升,近似线性上升。

在开关管关断瞬间,初级电流id为Coss充电,当Coss两端的电压超过Vin与nVo(输出二极管D开通时变压器副边线圈电压反射回原边线圈的电压)之和时,输出二极管D在初级电感Lp续流产生的电压作用下正偏开通,Lk和Coss发生谐振,产生高频震荡电压和电流。

在开关管关断阶段,输出二极管D正偏导通,把之前存储在Lp中的能量释放到负载端,此时副边线圈电压被箝位等于输出电压Vo,经匝比为n的变压器耦合回原边,使电容Cp电压被充电至nVo(极性下正上负),初级电感Lp两端的电压被箝位至nVo。当Lp续流放电结束后,输出二极管D反偏截止,Lp和Coss、Cp发生谐振,导致Cp上的电压降低。

 

FLY-MOS管的源极流出的电流(Is)与流入的电流(Id)波形进行对比分析。

A.示波器测试开关MOS的漏极(Id)的电流:


CH1:IC-CS(采样电阻)CH2:VDS  CH3:IC-DRV(驱动)CH4:Id(测试漏极D)

 

B.示波器测试开关MOS的源极(Is)的电流:

CH1:IC-DRV(驱动)CH2:VDS   CH4:Is(测试源极S)

 

   要了解FLY电源的特性就需要了解我测试图中的1,2,3处的电流特性对我们的可靠性及EMI设计都有帮助。

FLY反激电源实测Ids电流时前端都有一个尖峰(测试图中的1处),这个尖峰到底是什么原因引起的?怎么来消除或者改善?

这个尖峰是开关MOS开通的时候出现的,根据FLY回路,Ids电流环为Vbus(C1)经变压器原边、然后经过开关MOS再到Vbus(C1)形成回路。根据初级线圈电感特性,其电流不能突变,MOS开通时呈线性上升,但由于原边线圈匝间存在的分布电容(如下图中CP),在开启瞬间,使Vbus(C1)经分布电容CP到MOS有一高频通路,所以形成一个时间很短的尖峰。

此尖峰电流是变压器的初级电感的分布参数引起,因此可以从变压器的初级绕组来进行分析,改变这个电容CP的大小就可以改变这个尖峰电流;最直接的是加大间隙来减少耦合,如果绕组只有单层也可以减少耦合;但对于低功率的应用是没法实现的;实际上我们方法是采用典型的三明治绕法。当然如果对FLY电源的成本没有太高的要求:比如变压器尽量选用Ae值大的(增大变压器的选用型号),使设计时绕组圈数变少减少层数,从而使层间电容变小。也可减少线与线之间的接触面,达到减少分布电容的目的。

注意:三明治绕法是把原边绕组分开对此尖峰就会有改善,还能减少漏感。当然,无论怎样都不能完全避免分布电容的存在,所以这个尖峰是不能完全消除的。并且这个尖峰高产生的振荡,对EMI不利,对实际工作影响不大。但如果太高可能会引起芯片过流检测的误触发。

因此所有的FLY-开关电源IC内部都会加一个200nS-500nS的前沿消隐时间来防止误触发,就是常见的开关电源IC的LEB功能。

在开关MOS关断时,Is电流波形上有个凹陷(如下图3的位置)理论依据是什么?怎么改善?

    从上图可以看到;Is是不等于Id的,Is = Id+Igs(Igs在关断时是负电流,Cgs的放电(关断)电流如下图)。

    因此可以看到Id比Is大,是由于IS叠加了一个反向电流,所以出现Is下降拐点。显然要改善这个电流凹陷需要从不同的开关MOS管型号及驱动关断电流来进行对比分析。不同的开关MOS及驱动的关断电阻就会有不同的凹点,这也和EMI的设计有关系!

 

用示波器测试开关MOS管Id的电流波形(如图2处),开关MOS管关断时Id的电流为何会出现负电流?如下图

    注意MOS关断时:漏感能量流出给Coss充到高点(FLY漏感的能量不能传递到次级,此时漏感会与开关MOS的结电容形成谐振),即Vds到达反射尖峰的顶点上。到最高点后Lk相位翻转,Coss反向放电,这时电流流出,也就是Id负电流部份的产生(如果在开关MOS的DS间我们有并联的C4时:优化EMI-此Id的负电流会增大)。此负电流会增加开关MOS的发热。因此在电源和EMI的优化和可靠性的设计上,我们要达到一个平衡点!任何的设计要从实际的需求出发。

阿杜老师的理论是:产品可靠性第一位。再来最佳成本同时优化EMI的设计。

更多技术设计应用及技术交流;请关注阿杜老师

更多应用细节& EMC知识参考文献设计:

任何的EMC及电子电路的可靠性设计疑难杂症;先分析再设计才是高性价比的设计!

实际应用中电子产品的EMC及电路设计涉及面比较广;我的系统理论及课程再对电子设计师遇到的实际问题进行实战分析!先分析再设计;实现性价比最优化原则!


声明:本文为OFweek维科号作者发布,不代表OFweek维科号立场。如有侵权或其他问题,请及时联系我们举报。
2
评论

评论

    相关阅读

      暂无数据

      物联产品&电磁兼容EMC

      物联网产品的介绍及应用&电子产品...

      举报文章问题

      ×
      • 营销广告
      • 重复、旧闻
      • 格式问题
      • 低俗
      • 标题夸张
      • 与事实不符
      • 疑似抄袭
      • 我有话要说
      确定取消

      举报评论问题

      ×
      • 淫秽色情
      • 营销广告
      • 恶意攻击谩骂
      • 我要吐槽
      确定取消

      用户登录×

      请输入用户名/手机/邮箱

      请输入密码